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In Search of Military Unit Formations: 
G-String Models 

D. P. Gaver 

P. A. Jacobs 

0. Overview and Outline 

This report provides a way of quickly calculating a measure of what a sensor- 

equipped platform (e.g. JSTARS or a RPV/UAV) "sees" when it flies across a region 

containing a large (e.g. brigade-sized) unit. Such observations form the basis for inferring 

the size and type of the unit, or units. 

Calculations are in terms of (i) a convenient parametric model for the spatial 

arrangement and concentration of an entire unit, the effective size of target items within 

that unit and their disposition, the sensor's field of view and glance rate, and the speed 

and course of the sensor-equipped platform's travels across the region containing 

elements of the large force. Alternatively, calculations are made when (ii) single target 

items are distributed in any manner in the region, (iii) a sensor-bearing platform wanders 

in accordance with a random walk; (iv) combinations of the above. 

1. Diffuse-Concentrated Target Unit Models 

Suppose an opponent force, 31 e.g. a military unit such as an Army brigade, or a Naval 

battlegroup, is located in spatial formation centered and oriented at a position (around a 

center) in theater-space. J"is the subject of search by a platform, S, that moves across it. 

Detection and classification of Shy eT depends upon the numbers of individual items 

(optionally tanks, or tank companies, etc.) encountered during a surveillance passage by 

the sensor platform. The elements of the force J~ are cohesive groups such as tank 



companies that are spatially separated within their own rough boundaries. These are 

themselves concentrated-but-diffuse in space, within a flexible and changing unit 

boundary. There is a need for a simple, accurate-enough depiction of such a structure 

when attempting to model sensor interaction with a large unit such as a brigade. 

1.1 Crisp "Cookie-Cutter" Unit Templates 

Such a generic setup can be modeled by characterizing Jas a geometrical shape such 

as a large outline rectangle (cookie-cutter template) within which items (tanks or ships, or 

suitable groups of these) are arranged, perhaps in rectangular or circular subformations. 

The path of a searcher can then be treated as having given sweep width, that crosses part 

of the outline rectangle, "seeing" some of the individual items that lie within the path. 

Such a model can be simulated, but with some difficulty because of the many special 

cases potentially involved; see Gaver and Jacobs (1998); very specific 

geometric/trigonometric problems occur. It is also "too crisp", in that sharp-boundary 

depiction of formation shape is unrealistic, besides often leading to the mentioned 

analytical/computational difficulties. We seek, and provide, analytical formulas (the 

equivalent of multi-dimensional look-up tables often found in campaign models) that 

represent such situations efficiently, and even somewhat more realistically than does a 

crisp cookie cutter. The availability of such formulas shortcuts detailed event-by-event 

simulations, thus allowing models of theater-level operations or campaigns to be run 

expeditiously. 

Surprisingly, a great diversity of individual sensor behaviors can be explicitly 

modeled in entirely or nearly closed form, leading to great computational economy. 

1.2 The Gaussian Diffuse-Concentrated Target Unit 

As an alternative to the above, we first consider a target formation representation that 

is concentrated, but smoothly and diffusely: its elements (individual items such as tanks, 



or tank components) occur with high density near its center, that density falling off 

relatively gradually, and not necessarily symmetrically, with distance from the center. 

The target density is thus a smooth bump, not a sharply-defined block. The bump (unit 

outline) can be long and thin in a chosen direction, or (nearly) symmetrical, at the choice 

of the analyst. We first consider a "fixed bump", but the results can be generalized to a 

"moving bump",' and one with varying item types. Several separated bumps can be 

represented, if so desired. 

An extremely convenient parametric example of such is a bivariate Gaussian: 

measure distance from formation center as origin, and let the density of (Red) units at 

(x, y) be 

r(x,y,T) = ^e-^"f ■      »      e^f (1.1) 

where the orientation is arbitrarily chosen to be along x and y axes (this is readily 

changed). It is of course clear that equal density contours are ellipses, and that the ellipse 

(x/Tj2 + (y/TJ)
2=+21n2 = 1.386... (1.2)' 

defines a natural two-dimensional "median density": for (x, y) closer to (0, 0) than the 

boundary of (1.2)— inside that ellipse— the density exceeds Vi of the peak density 

, while outside the ellipse the density is less than Vi of that peak, falling 
<       1       ^ 

(27t)TxTyJ 

rapidly to zero, but not symmetrically. The shape of the bump is otherwise not adjustable. 

However, there is nothing to prevent a meta-unit from being a collection of Gaussian 

bumps that even move cooperatively (and suffer attrition, or enjoy reinforcement). 



2. Modeling Sightings by the Sensor 

Suppose that at time t a sensor (platform such as JSTARS or a UAV) is 

located/centered at coordinates (ax + bxt, ay + byt). Its glance rate at location (u, v) is 

assumed proportional to a Gaussian: 

f       1 / L    \2 /   2\f       " .\2/?A 

g{u,v;t,0) = d- 
s[2n; 0)y 27t O), 

(2.1) 

where 9 is the overall glance rate per unit time. Thus the sensor is responsive to actual 

units within a region 0(0^, 0)y) of its location at any time, roughly its field of view. 

The probability that a glance at point («, v) hits, or potentially reveals the presence of 

a component or item that is present and centered at (x, v) is conveniently modeled as 

Gauss-like: 

,, x        4[(*-«)7^+(y-v)2M] 
d(x,y;u,v) — pe   l J 

i[(X-uf/Sl]     -tyrvW] 
(2.2) 

pe "L . J-e 

where 0 <p < 1. Think of (4, <^) as defining the vulnerability of the unit component at 

(x, y) (e.g. tank company) to being seen by a glance "at" (u, v). Given (x, y), the 

probability that a single glance from a sensor located at (ax + bxt, ay + byi) is effective, i.e. 

records a sighting, is seen to be proportional to a convolution of Gaussian densities (i.e. a 

two-fold Gauss or G-string): 



d(x,y;ax+bxt,ay+byi} 

oo    oo 

= J   J d(x,y;u,v)g(u,v;t,l)dudv 
—oo —oo 

2 
-L(u-ax-bxtf/mx       -  _Uy_v)2,s2 e-2-{v-a>-b><)'H 

t —" Litt       I    C ,— — 

■427ICO- J y/2ff(o 
= p \e~{x~u) l5* 6- = du je->{y-v) l5> £- == dv      (2.3) 

-^x-ax-bxtf/(co2
x+Sl) _.(y_flv_V)2/(^+£2) 

-p-4lKÖx j yjlnoy i 
■2\2 

=       *,      __^__tf4(«iJt-v)V(^+^)tf4{^-V)2/W+^) 

This expression is evidently a probability, with value dependent upon sensor field-of- 

view parameter (6^, (Oy\ conveniently 0)= C0x = 0)y), and target item's size/dimension- 

visibility, as quantified by (d\, Sy). The latter depends on an item's physical dimension 

and orientation (<% and Sy are not necessarily equal), but also implicitly on terrain and 

background contrast and clutter, at least in an average sense; for instance, Sy=2Sx might 

characterize a tank company lined up parallel to the y (e.g. North-South) axis. Strictly 

speaking, the present model only represents a target item that is selectively non- 

symmetric, e.g. extended in parallel with the direction of the axes of symmetry of the 

entire unit, but the actual "shape" of the item is here left implicit. 

Use the assumed bivariate Gaussian representation of item density, (1.1), to calculate 

the probability that a sensor glance at t reveals a target item: 

oo    oo 

r{t) = J jd[x,y;ax + bxt,ay + byt)r(x,y;t)dxdy. (2.4) 
—OO —oo 

where T=(tx, Ty). 

By direct analogy with the calculation leading to (2.3), 



r(t)=p—*Ä—r—
sI—r 

(T
2

X+CO
2

X+8
2

X)
2
 (t2

y+co2
y+ö2

yy (25) 

-^ax+bxt)
2/(r2

x+co2
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x) -L(ay+bytf/(T
2+<oy+82) 

Expected Sightings Over a Linear Sensor Path 

If 6 is the glance rate from the (moving) sensor and R is the total number of unit 

items, then the expected number of sightings/detections over a sensor path (ax + bxt, ay + 

byt; ti<t<tu) is given by the integral of 6r(t)R with respect to t over whatever time 

interval the sensor maintains activity, e.g. t[<t<tu. Recognizably, 6r(t)R is the rate of 

sightings of items (however defined) at (x, y) by a sensor at (ax + bxt, ay + byt); it is 

entirely possible that some, even many, of these are re-sightings, i.e. that the events are 

not all novel to the sensor as it moves and glances repeatedly. Whatever is seen must 

depend on the speed with which the sensor platform travels; that speed is implicit in 

(bx, by). 

In Appendix I it is shown that the calculation of the required integral of r(i) is 

conveniently based on new parameters, ju and ö2, that are simple functions of the initial 

ones: 

'f-L^rf/i^l+Sl) x e-\{ay+bytfl{r\.+co)+S))dt 

h 
(2.6) 

J v       ' \  \   a   J      V   &  )) 
h 

where ju and ö2 are expressed in terms of the basic ax, bx, ay, by, etc. parameters. 



Assemble the parts into one formula (set (Ox = (Oy - CO): 

r(tl,tus) = Rdp<jJl7Z 
Sx8y 

\{r2
x + co2 + S2

x)(r
2

y + co2
+S2

y)] 

,-K2/2 <P 
V    G    ) 

-<D 
V    <J   )j 
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2
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2
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y +co2+i [b2/(rl+co2
+S2

x) + b2/(T2
y+co2+S2
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K2 = \{ax +bxJu)2/(t2
x +co2 +S2

x) + (ay + byßf/(T
2
+CO

2+S2) 

(2.7) 

It is more "physical" to represent the above in terms of the platform speed, s, and 

direction: 

bx = s cos <p,        by = s sin cp 

where (p'\% the angle the sensor course makes with the x-axis. Then 

and 

a2 = 1/ s2 cos  q> 
J-  ,  „2 • + - sin2 (p 

\tx+oo-+62
x)    ( TI + CO

2
+S

2
) 

fi = — 
5 

(ax cos ^/(r2. + co2 + S2) + (ay sin <pj{t2 + co2+ Ö2)) 

cos2 (pjifx + 0)2 + £2) + sin2 <PI{T
2
 +CO

2
 +Ö2} 

K2 = (ax +cx/sf /(T2
X+ü)

2
 +S2

x) + (ay+cy/sf /(T2
+0)

2
 +S2) 

(2.8) 

where cx, cy do not depend on s. 



All calculations are extremely straightforward once course and speed of the sensor is 

specified ((ax, bx, ay, by) as well as the times. A look-up table or quickly calculated 

approximation for the 3>(z) cumulative unit Gaussian is needed. Just setting the bracketed 

O's term equal to unity (tu = °°, ?/ = - °°) gives a crude upper bound on the number of 

sightings by the sensor as it flies over the target unit. This might be adequate to 

characterize what a satellite sees. 

Usefulness. There is a connection between the total number of sightings over a fixed 

sensor course and the identity of any unit that happens to be encountered (and that unit's ' 

size, and disposition, e.g. parameters R and (xx, Ty)). If the platform is a satellite with 

preset course (ax, ay, bx, by) the sighting of an (expected) number greater than a threshold 

can trigger a UAV hunt. This can be modeled in the present level of detail, or just its 

effect modeled as a probability. 

2.1 Uncertainty of the UAV Course 

In operational practice a cued platform such as a UAV will not necessarily follow the 

correct course, e.g. over the formation center. To account for this possible variability 

effect one may randomize (once and for all) on (bx, by), by averaging out (taking the 

conditional expectation) over an appropriate (posterior) distribution. Of course this does 

not account for realistic within-flight cueing: when this occurs the UAV sequentially 

picks up indications of where to go next; such a realism is not yet modeled. 

It is still possible to carry out a calculation leading towards (2.5) and later formulas 

explicitly, up to a point. The practical import is that another stage of realism can be 

handled analytically rather than by carrying out Monte Carlo sampling (provided course 

uncertainty can be represented adequately by a Gaussian). Here the components of the 

course error are taken to be independent, again with 



-\{u-ßxflrl 
4 («;A. r*)=—s=  (2.9,a) 

V2/r ^ 
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Thus, another G-string component appears. 

Appeal to (2.5) with (ox = (Oy = (o and remove conditions on bx and by (independently 

for convenience, but this is not essential): the rate of sightings/detections at time t is 

r(t;ßx,cj2x,ßy,c72
y) = Re 5* Sy 

i 
:2M 

X 

(r2
x+cox+öxy  (r2

y+co2
y+ö2f 

\  i = du (2.10) 
L^(rl+co2+S2

xf     ™?* 

x [ j == dv. 
L^(r)+co2'+82

yy     ^"Vy 

Interpretation of the integrals as Gaussian convolutions or thinking in terms of adding 

independent Gaussian random variables gives this formula 

r(f,ßx,(J2
x,ßy,<T2) = R0e ■        -e (2.11) 

■flä^x+a +ö2
x + y2

xt
2   -j2^^JT2+cD2 + ö2

y + r2t2 

To continue the analytical program that leads to the expected number of contacts over a 

time period, as in (2.5), we must integrate (2.11) with respect to t. This is not an easy 

closed form integral, but simple numerical integration should be adequate, or Monte 

Carlo sampling of glance times according to an exponential distribution is possible. This 

would represent an enhancement of Metron's ISP idea. Whatever time either approach 

takes is likely to be insignificant as compared to a detailed event-by-event simulation. 



2.2 Random Walking Sensor 

Consider a sensor that "random walks" around the region of interest (this idea has 

been mentioned by R. Blacksten). We analyze first a simple random walk in terms of 

Brownian motions with drift, but it is also possible to allow the sensor to execute 

Brownian-bridge motion, whereby the sensor returns to a particular location after a given 

time S, the on-station time. Having finished, it leaves the region. It is possible that such 

sensor maneuvering will turn up more items than a straight-line course, unless the latter is 

very well directed. 

A random-walking sensor's course can be represented as (ax + bxt + oxWx{i), ay + 

byt+ OyWyit), tt < t < tu), where (Wx(t), Wy(t), t[ < t < tu) is a pair of independently 

evolving Brownian motions or Wiener processes; each has mean 0 and variance t and 

further has independent Gaussian increments: Thus at time t the r(r)-value is, conditional 

on the past history of the sensor, obtained by replacing ax + bxt by ax + bxt + <JxWx(i), and 

correspondingly ay + byt by ay + byt + oyWy(t) in (2.5). Now remove the condition on the 

past: 

8, 8, 
r{t) = 6Rp- y 

2\2 (T2
x+a>2x+S2

xy   (Ty+CDy+S2
y) 

1     2 

J Jl-rr -J2K 

i /        , r- \2 //   ?       ?    „7\      — \{ay+byt+ay4iz)2/(z2
x+(ox+82

x) e lZ dz 
X   I 6 .  

V2^r 
-co 

Straightforward manipulation shows that the above integrals are again Gaussian 

convolutions that are explicitly of Gaussian form: the rate of sightings/detections at time t 

is 

10 



r(t) = 6Rp- 

xe 

xe 

(rI + (oI + 82
x + a2

xt)
2  (T

2 + co2 + S2 + o2t) 

i(a,+bytf /{r2.+co2.+82.+(j2. 

(2.13) 

Numerical integration over ti<t<tu again provides the mean number of detections over 

the path, and exponentially distributed times between glance sampling provides a 

probabilistic/stochastic version. 

Note: the formulas given are approximations that must be calibrated to properly reflect 

the influence of sensor speed, s. 

3.  G-String Models Explained and Numerically Illustrated 

3.1 An Example 

Consider a very special simple scenario: a single sensor-bearing platform on a (cued) 

course travels over a stylized brigade size unit; here composed of 9 company-size 

"items", each of specific size, and all scattered or assembled over a plausibly-sized spatial 

region. The sensor package scans at about 1 scan/second; each scan directs a glance (a 

visual bullet) at some point in space; if the glance encounters/is near enough to an item a 

hit is generated with a probability governed by how close the glance was to the target size. 

With a given probability, then, the hit is converted to detection; (the above probability 

could be the probability (= fraction of time) some items are moving and not hidden by 

terrain). 

3.2 Example Mini-Scenario 1: A Brigade-Sized Unit Investigated by a Cued UAV 

(a) Represent the Brigade as a collection of 9 companies (here called "items") that are 

clustered within a region of approximately 3-km radius around a center. 

11 



(a-1) Model: The locations of the companies are independently and bivariate-Gaussian 

distributed with mean (0,0) (center) and x-coordinate and y-coordinate variances Tx(km ) 

and T2(km2) = 32(km)2. These items could be arranged in standard formations ("two up 

and one back") if the analyst wishes to commit to precise locations). 

(b) Each company (item) has an effective detectability or size: depending on the 

particular terrain, and on whatever other conditions prevail (to be specified). For the 

present example, the item size is on the order of 82
x = 52. = 0.25km ; this is easily 

adjusted. 

(b-1) Model: The effect of the item size or visibility is represented by a probability of 

sensor glance hit that is proportional to a bivariate-Gaussian variable with x-coordinate 

and y-coordinate variances <5*(km2) and 5;; (km2). The probability of detection thus falls 

off gradually with the distance of a sensor glance location from the center of the item. 

The above specific figures were abstracted from the CGSC Student Text 100-7 

Soviet-Style Threat Tactical Handbook, U.S. Army Command and General Staff College, 

Fort Leavenworth, Kansas, 1 March 1992. We are grateful for advice from LTC C. Shaw. 

(c) A sensor on the platform is characterized by a glance rate 6 and a sensor footprint 

or region of glance concentration or field of view. Repeated glances fall over that 

footprint. 

(c-1) Model: The sensor footprint is proportional to a bivariate-Gaussian variable with 

x-coordinate and y-coordinate variances ft)2 (km2) and ft)2, (km2). We assume cox = (&? = (O 

so the sensor's attention is spread uniformly, angularly, around the sensor (platform) 

instantaneous location, but does not extend much beyond 2 to 3 x ft) from the current 

sensor location. If a glance location is close enough to the target item's center it registers 

a hit, and a potential detection. We introduce another random effect, detection probability 

p, to reflect that every hit may not be a detection. Assume here that the human glance rate 

6= 1 per sec. The basic notion of the model is that, at rate 6, the particular sensor system 

12 



instantaneously focuses at locations in space picked randomly and independently in a 

manner governed by a bivariate-Gaussian ("normal") distribution. Depending upon how 

close such a glance location is to a target item, a hit or potential detection is registered, as 

governed by target item size, as in (b). 

(d) The platform travels linearly at speed, s, here 100 miles per hour, which is 161km 

per hour; the course is directly over the center of the brigade area. Thus, the platform will 

spend 1.5/161 = 0.003 hours~34 seconds to fly 3 x 0.5km. It will spend 36/161 = 0.22 

hours~805 sec to fly 3 x 6km. Thus, the sensor will have approximately 805 glances 

along its pass over the area occupied by the brigade and approximately 34 glances over an 

area occupied by a company-sized unit. Note: these specific numbers are only for 

illustration. 

3.3 Sensor Course Specifics (Illustration) 

Assume the sensor is perfectly cued and travels along the y-axis starting at ax =0, ay = 

-18. It moves at a speed s = 0.045km/second for 805 seconds; thus, bx = 0 and by = 0.045 

(km/sec): The positions of the 9 items (here companies) have been drawn from a 

bivariate-Gaussian/normal distribution centered about (0,0) with standard deviations Tx = 

3km and Tj,=3km. The size of a unit is characterized by Sx =0.25km = dy. The rate of 

glances is 6 = 1 per second. Given the position of a glance of the sensor and the position 

of a unit, the probability the item (company) is detected is given by (2.2) with p = 0.7. 

The footprint of the sensor is cox =(Oy =0.5km. 

3.4 Detailed Simulation with Randomly Located Glances 

The results of the model with the above parameters were compared to those of a 

simulation. Each replication of the simulation generates glance instants from a Poisson 

process with rate 0=1 per second. The position of the sensor is computed at each glance 

time for the Poisson process. 

13 



Note: Connection with ISP and classical search 

This is the equivalent of glancing at exponentially distributed intervals. If target items 

were uniformly distributed in space along the sensor path then this would be closely 

related to the Implicit Search and Prosecution (ISP) model suggested by Metron (Metron 

(1997)): times to detection would be exponential. The G.-S. model discussed accounts for 

clustering of target items as they might occur in space in "standard" military formations. 

For G.-S. the times to detection will not generally be exponentially distributed but 

account for "simple" modifications that depend on the general (or specific) locations of 

the target items. 

In the simulation, a "1" is assigned to a unit if a hit occurs, and "0" otherwise. 

In each replication of the sensor traversal of the region, the positions of the 9 units are 

generated according to a bivariate-Gaussian distribution with standard deviations xx = ty = 

3km. This Gaussian sampling does not have to be done if another item configuration 

generator (cookie cutter) is preferred; explicit integration again seems feasible. 

For 500 replications of the simulation using the parameters given above, the mean 

total number of hits for a flight through the areas is 7.08 with a standard deviation of the 

mean of 0.22. The mean number of hits given by the model (2.7) is 7.19, so on the 

average the model does well and is extremely inexpensive and quick from a 

computational viewpoint. 

Figures 1-4 present displays of the possible items' locations within the unit (centered 

at (0,0)) and the results of a number of sensor passes (replications) over the unit area with 

the items' locations fixed. In general the analytical model (2.7) is useful against the 

individual item configurations. 

Usefulness: Consider a decision rule that states that a unit is present if the mean number 

of detections exceeds a threshold (to be determined). The model results quickly show 

whether a sensor has encountered a unit of specified size (and type). A more refined 

14 



approach could be Bayesian, using the non-stationary Poisson number of detections 

implied by the exponential sampling model as likelihood, to be combined with an 

appropriate prior, based on knowledge of the number of items R in the unit of item sizes 

(measured by (Sx, 5y)) and spatial spread of the unit (jx, Ty). 

15 
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APPENDIX I 

Note that we can write 

-T^x+htf l^l+0)l+öl)--(ay+bytf /{T^+O^ + ö)) 

*-L{t-tflJ+LK\ 

Now differentiate both sides of the above: 

jt(
9) = ^x+Kt)bx/^

2
x + 0)2

x + S2
x)-(ay+byt)by/(T1

y + a)2y + S2
y) 

(ALI) 

(A12) 

^-(t-ju)\/a2. 

Identify coefficients of powers of t (first, 0th): 

Coeff f. ^. = b2^T2+ü)2+s2^ + b2^T2+a)2+s2^ (AU) 

Coeff 1: 4- = -[W(^ + ü)x+^x) + ciyby/(T
2 + co2 + S2

y)\ (AI.4) 

[flA/V* + a>l + S\) + QA/(7y + a2y + S2)] 
//~   [^/(^+^+<y*)+fcM^+^+^)j (AI5) 

Also, if we put t = //, the 

*2 = -(«, +bxßfl(r2
x + a>2 + S2

x)-(ay +byJuf /[z2
y + a>2

y + S2
y).        (AI.6) 
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APPENDIX II 

Glances at a Single Item 

Suppose a target is in place at (x,y). Let it be the object of search by a platform- 

sensor that is on course (ax + bxt, ay + byt\ ti<t<tu). 

(a) Use the detection model to calculate the probability that a glance at time t 

detects/sees the target, using the exponential probability model (2.2); it is seen that this is 

given by (2.3) (take co* = (Oy = co, 8* = 5y = 8): 

S 
1    i \" 

{x-ax-bxt) +{y-ay-byt) lw2
+S2 

d(x,y,ax+bxt,ay+byt) = p——-j-e   L J/ (ADL1) 

Note: A simple formula does not (yet) result if we put a circular cookie cutter at (x,y); see 

Eckler, Ross and Buss (1972). 

(b)       Formulas already given, (2.7), give the total expected number of glances at (x, v) 

over ti<t< tu: simply do not integrate out (x,y), but do integrate on t, which can be seen 

to require only 

(b-1)   remove/set to zero rx, ry\ 

(b-2)   replace ax by ax - x, ay by ay - v. 

Thus the assumption of a Gaussian-bump complex target has now been replaced by a 

single target at (x, v) with size 5. We calculate the expected number of glances "at" that 

target as the platform-sensor combination proceeds along the specified path. 
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